Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MoO3-Au composite interfacial layer for high efficiency and air-stable organic solar cells

Identifieur interne : 000176 ( Chine/Analysis ); précédent : 000175; suivant : 000177

MoO3-Au composite interfacial layer for high efficiency and air-stable organic solar cells

Auteurs : RBID : Pascal:13-0143283

Descripteurs français

English descriptors

Abstract

Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3-Au co-evaporation composite film as the anode interfacial layer (AIL). The optical and electrical properties of the composite MoO3-Au film can be tuned by altering the concentration of Au. A composite film with 30% (weight ratio) Au was used as the AIL and showed a better performance than both pure MoO3 and PED-OT:PSS as AIL. The surface morphology of the MoO3-Au composite film was investigated by atomic force microscopy (AFM) and showed that the originally rough ITO substrate became smooth after depositing the composite film, with the root mean square roughness (RMS) decreased from 4.08 nm to 1.81 nm. The smooth surface reduced the bias-dependent carrier recombination, resulting in a large shunt resistance and thus improving the fill factor and efficiency of the devices. Additionally, the air stability of devices with different AILs (MoO3-Au composite, MoO3 and PEDOT:PSS) were studied and it was found that the MoO-Au composite layer remarkably improved the stability of the solar cells with shelf life-time enhanced by more than 3 and 40 times compared with pure MoO3 layer and PED-OT:PSS layer, respectively. We argue that the stability improvement might be related with the defect states in MoO3 component.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0143283

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">MoO
<sub>3</sub>
-Au composite interfacial layer for high efficiency and air-stable organic solar cells</title>
<author>
<name>HONGBIN PAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Information Science & Electronics Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LIJIAN ZUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEIFEI FU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CONGCHENG FAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andreasen, Birgitta" uniqKey="Andreasen B">Birgitta Andreasen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Energy Conversion and Storage, Technical University of Denmark</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>4000 Roskilde</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAOQINGJIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Information Science & Electronics Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Norrman, Kion" uniqKey="Norrman K">Kion Norrman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Energy Conversion and Storage, Technical University of Denmark</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>4000 Roskilde</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krebs, Frederik C" uniqKey="Krebs F">Frederik C. Krebs</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Energy Conversion and Storage, Technical University of Denmark</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>4000 Roskilde</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HONGZHENG CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0143283</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0143283 INIST</idno>
<idno type="RBID">Pascal:13-0143283</idno>
<idno type="wicri:Area/Main/Corpus">000F84</idno>
<idno type="wicri:Area/Main/Repository">000890</idno>
<idno type="wicri:Area/Chine/Extraction">000176</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Anode</term>
<term>Atomic force microscopy</term>
<term>Butyric acid</term>
<term>Chemical stability</term>
<term>Codeposition</term>
<term>Composite coating</term>
<term>Composite film</term>
<term>Composite material</term>
<term>Doped materials</term>
<term>Electrical characteristic</term>
<term>Electrical properties</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Heterojunction</term>
<term>Heterostructures</term>
<term>High efficiency</term>
<term>Indium oxide</term>
<term>Interfacial layer</term>
<term>Molybdenum oxide</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Polymer blends</term>
<term>Reliability</term>
<term>Root mean square value</term>
<term>Roughness</term>
<term>Smooth surface</term>
<term>Styrenesulfonate polymer</term>
<term>Surface morphology</term>
<term>Surface structure</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche interfaciale</term>
<term>Rendement élevé</term>
<term>Stabilité chimique</term>
<term>Cellule solaire organique</term>
<term>Hétérojonction</term>
<term>Couche active</term>
<term>Codépôt</term>
<term>Revêtement composite</term>
<term>Film complexe</term>
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Propriété électrique</term>
<term>Caractéristique électrique</term>
<term>Evaluation performance</term>
<term>Morphologie surface</term>
<term>Structure surface</term>
<term>Microscopie force atomique</term>
<term>Rugosité</term>
<term>Addition étain</term>
<term>Valeur efficace</term>
<term>Surface lisse</term>
<term>Oxyde de molybdène</term>
<term>Matériau composite</term>
<term>Hétérostructure</term>
<term>Thiophène dérivé polymère</term>
<term>Ester</term>
<term>Acide butyrique</term>
<term>Composé du fullerène</term>
<term>Anode</term>
<term>Styrènesulfonate polymère</term>
<term>Oxyde d'indium</term>
<term>Mélange polymère</term>
<term>Matériau dopé</term>
<term>Fiabilité</term>
<term>8105T</term>
<term>7867</term>
<term>6837P</term>
<term>8460J</term>
<term>MoO3</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau composite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C
<sub>61</sub>
-butyric acid methyl ester (P3HT:PC
<sub>61</sub>
BM) blend active layer have been fabricated with a MoO
<sub>3</sub>
-Au co-evaporation composite film as the anode interfacial layer (AIL). The optical and electrical properties of the composite MoO
<sub>3</sub>
-Au film can be tuned by altering the concentration of Au. A composite film with 30% (weight ratio) Au was used as the AIL and showed a better performance than both pure MoO
<sub>3</sub>
and PED-OT:PSS as AIL. The surface morphology of the MoO
<sub>3</sub>
-Au composite film was investigated by atomic force microscopy (AFM) and showed that the originally rough ITO substrate became smooth after depositing the composite film, with the root mean square roughness (RMS) decreased from 4.08 nm to 1.81 nm. The smooth surface reduced the bias-dependent carrier recombination, resulting in a large shunt resistance and thus improving the fill factor and efficiency of the devices. Additionally, the air stability of devices with different AILs (MoO
<sub>3</sub>
-Au composite, MoO
<sub>3</sub>
and PEDOT:PSS) were studied and it was found that the MoO-Au composite layer remarkably improved the stability of the solar cells with shelf life-time enhanced by more than 3 and 40 times compared with pure MoO
<sub>3</sub>
layer and PED-OT:PSS layer, respectively. We argue that the stability improvement might be related with the defect states in MoO
<sub>3</sub>
component.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>MoO
<sub>3</sub>
-Au composite interfacial layer for high efficiency and air-stable organic solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HONGBIN PAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIJIAN ZUO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WEIFEI FU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CONGCHENG FAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ANDREASEN (Birgitta)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XIAOQINGJIANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NORRMAN (Kion)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KREBS (Frederik C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>HONGZHENG CHEN</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Information Science & Electronics Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Energy Conversion and Storage, Technical University of Denmark</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>797-803</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000500610690130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0143283</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C
<sub>61</sub>
-butyric acid methyl ester (P3HT:PC
<sub>61</sub>
BM) blend active layer have been fabricated with a MoO
<sub>3</sub>
-Au co-evaporation composite film as the anode interfacial layer (AIL). The optical and electrical properties of the composite MoO
<sub>3</sub>
-Au film can be tuned by altering the concentration of Au. A composite film with 30% (weight ratio) Au was used as the AIL and showed a better performance than both pure MoO
<sub>3</sub>
and PED-OT:PSS as AIL. The surface morphology of the MoO
<sub>3</sub>
-Au composite film was investigated by atomic force microscopy (AFM) and showed that the originally rough ITO substrate became smooth after depositing the composite film, with the root mean square roughness (RMS) decreased from 4.08 nm to 1.81 nm. The smooth surface reduced the bias-dependent carrier recombination, resulting in a large shunt resistance and thus improving the fill factor and efficiency of the devices. Additionally, the air stability of devices with different AILs (MoO
<sub>3</sub>
-Au composite, MoO
<sub>3</sub>
and PEDOT:PSS) were studied and it was found that the MoO-Au composite layer remarkably improved the stability of the solar cells with shelf life-time enhanced by more than 3 and 40 times compared with pure MoO
<sub>3</sub>
layer and PED-OT:PSS layer, respectively. We argue that the stability improvement might be related with the defect states in MoO
<sub>3</sub>
component.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D11C06</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Couche interfaciale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Interfacial layer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Capa interfacial</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Stabilité chimique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Chemical stability</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estabilidad química</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Codépôt</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Codeposition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Codeposición</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Revêtement composite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Composite coating</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Revestimiento compuesto</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Film complexe</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Composite film</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Película compleja</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Optische Eigenschaft</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="GER">
<s0>Elektrische Eigenschaft</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="GER">
<s0>Elektrische Groesse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="GER">
<s0>Oberflaechenbeschaffenheit</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Rugosité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Roughness</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="GER">
<s0>Rauhigkeit</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Rugosidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="GER">
<s0>Zinnzusatz</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Valeur efficace</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Root mean square value</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Valor eficaz</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Surface lisse</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Smooth surface</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Superficie lisa</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde de molybdène</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Molybdenum oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="GER">
<s0>Molybdaenoxid</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Molibdeno óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="GER">
<s0>Verbundwerkstoff</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="GER">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Anode</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Anode</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="GER">
<s0>Anode</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="GER">
<s0>Indiumoxid</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>32</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>47</s5>
</fC03>
<fC03 i1="34" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>47</s5>
</fC03>
<fC03 i1="34" i2="X" l="GER">
<s0>Zuverlaessigkeit</s0>
<s5>47</s5>
</fC03>
<fC03 i1="34" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>47</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>6837P</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>MoO3</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>119</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000176 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000176 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0143283
   |texte=   MoO3-Au composite interfacial layer for high efficiency and air-stable organic solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024